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The definition of the Drazin inverse of a square matrix

\

with complex elements is extended to rectangular matrices by . 1
showing that for any B and W, m by n and n by m,
respectively, there exists a unique matrix, X , such that

(BW)k = (BW)k+1XW, for some positive integer k , XWBWX=X

and BWX=XWB. Various expressions satisfied by B, W, X and

related matrices are developed. |
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SIGNIFICANCE AND EXPLANATION

Efficient methods for handling systems of linear simultaneous
algebraic equations provide a fundamental tool in solving problems in
almost every area of computing and applied mathematics. In matrix
notation, the solution of Ax = b is given by x = A-lb, where A~
denotes the inverse of A .

In classical matrix algebra, the inverse of A exists only if
A is square and "nonsingular." The unique inverse then satisfies
AA-l = A-lA = I. A singular or rectangular matrix has no inverse
in this sense. However there may be associated with it a variety of
"generalized inverses", each having some of the properties of the
usual inverse. For example suppose that we have m equations in n
unknowns, Ax = b, where A is m Xxn, m > n, rank n. The solution
in a least squares sense is

X = (ATA)-IATS
and the matrix multiplying b is a generalized inverse.

A certain type of generalized inverse, the Drazin inverse, has
heretofore been defined only for square (usually singular) matrices
and has found application to Markov processes and to the solution of
systems of ordinary differential equations. 1In this paper the defini-
tion of the Drazin inverse is extended to rectangular matrices and
its properties studied. (This extended Drazin inverse is defined in the

Abstract.)

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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A DRAZIN INVERSE FOR RECTANGULAR MATRICES

R. E. Cline and T. N. E. Greville

1. INTRODUCTION.
ILet A be any rectangular matrix with complex elements. Then the Moore-
Penrose inverse of A is the unique matrix X = A+ such that
H H
(1.1) AXA = A, XAX = X, (AX) = AX, (XA) = XA
(where the superscript H denotes conjugate transpose). On the other hand, if

A is square, the Drazin inverse of A is the unique matrix X = A_ such that

d
3 )
(1.2) AF = Ak lx, for some positive integer k ,
(1.3) X = x°A ,
(1.4) AX = XA,

It is the purpose of this paper to show that a Drazin inverse can be defined
for rectangular matrices in such a way that both Af and Aa (when A 1is square)

follow as special cases.

2. THE W-WBIGHTED DRAZIN INVERSE OF B .

Although the Drazin inverse was originally considered for elements in an
associative ring [3] and Lemma 1 was established in that context [2], we use
this result only for matrices and restate it accordingly.

LEMMA 1: For any matrices B and W, m by n .and n by m, respectively,
(BW), = B(WB)ZW.

The reader can also verify Lemma 1 by taking X equal to the right member
of the equation and A = BW and verifying that (1.2)-(1.4) are satisfied.

Using (1.4) to rewrite (1.3) as A, = A AAd, the expressions in Corollary

d d

1.1 now follow at once by induction.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




COROLLARY 1.1: For every positive integer p ,

P P,
w(Bw)d (WB)dw

p p
B(WB)d (BW)dB.

Our first result, Theorem 2, is established for an arbitrary positive
integer p . As will be indicated following the proof, however, the general
case can always be reduced to p = 2 by a simple transformation.

THEOREM 2: For any matrices B and W , and for every positive integer p ,

there is a unique X such that

b P
(2.1) (BW)dXW = (BW)d ’
(2.2) BWX = XWB
(2.3) BW(BW)dX = X.

Also, there is a unique X such that

(2.4) xw = Bw(BW)E ,
(2.5) WX = wa(wa)g
(2.6) xwEnP1x = x .

The unique matrix X which satisfies both sets of equations is
2.7 X = B(WB) .
Proof: Using (1.3) and Corollary 1.1, it is easily seen that X in (2.7)
satisfies (2.1) to (2.6).

To establish uniqueness, we show first that (2.1), (2.2) and (2.3) imply
(2.4), (2.5) and (2.6), and then that (2.4), (2.5) and (2.6) imply (2.7).

Now XW = BW(BW) XW = BW(BW)E, by (2.3) and (2.1). Thus (2.4) holds, and
combines with (2.3) to give

xw(BWP Ix = BW(BW)g(Bw)p-IX = BW(BW) X = X .

Thus (2.6) also holds. Finally, using (2.2), (2.3), (2.4) and Corollary 1l.1

we have




e ————

2

= WBW(BW)dX = (WB)dWBWX

— P
(WB)dWXWB = (WB)dWBW(BW)dB

we)® W)™ = (we) wB)®
that is, (2.5). Hence (2.1), (2.2) and (2.3) imply (2.4), (2.5) and (2.6).

If (2.4), (2.5) and (2.6) hold, then

x = xwEnPIx = BW(BW)g(BW)p-lx
» i P
= (BW) dwa (BW) dBWB(WB) a
= p+l _ P
BWB(WB)d = B(WB)d .
Hence (2.7) holds. .

Observe next that if p >1, g > -1 and r > 0 are integers such that {
g+2r+2 = p, and if we let wB)9 = (WB)d when q = -1, then B(WB)g =
B(wB) T1((wB) W) (B(wB)T)15. Consequently, considerations of X in Theorem 2
can always be reduced to the case p =2 if B is replaced by B(WB)q and
W 1is replaced by (we) “w.

COROLLARY 2.1: The matrix X = B(WB)E is the unique solution to the equations

(2.8) (BW)k = (BW)k+1xw, for some positive integer k ,
(2.9) X = XWBWX ,
(2.10) BWX = XWB .

Proof : That X = B(W3)§ is a solution is apparent by noting that the relations
in (2.10) and (2.2) are identical, (2.9) is (2.6) when p = 2 and, with
XW = (BW)d by (2.4), (2.8) is (1.2) for A = BW .

To show uniqueness, suppose both X, and X_, are solutions to (2.8) for

1 2

some positive integers k1 and k2, respectively, (2.9) and (2.10). Let

x = max (kl'kz)' Then using repeated applications of equations (2.8), (2.9),

and (2.10) we nave -

NR—

po .




2 2
xl = xlwzawxl = 1A3w2(lwxL = (BW) ()flw) xl ;
k k+1 k
B s wa) (xlwi x1 = (BW) x%W(xlw)A x1
k+1 k k k
= x2 (WB) w(xlm X, = xzwaw(sw) (xlw) x1 B
= X_WBWX. .
2 1 #

Continuing in a similar manner, XZWBWXl can be reduced to X2. Thus
X = B(WB)E is unique. -

It should be noted in Corollary 2.1 that Bd = B(WB)g when B 1is square
and W = I. Also, there is a direct correspondence between the relations in
(2.8) and (1.2), (2.9) and (1.3) when written aé X = XAX, and (2.10) and (1.4)
in which the role of W in (2.8), (2.9) and (2.10) is to act as a "sandwich"
matrix so that products such as BWX and XWB can be defined. 1In view of the
correspondence between the defining equations for Ad and those in Corollary
2.1, we define the Drazin inverse of a rectangular matrix in the following
manner:

DEFINITION 1l: For any matrices B and W, m by n and n by m , re-

spectively, the matrix X = B(WB)z is called the W-weighted Drazin inverse of

B, and is written as X = Bd,w

Given a square matrix, A , the smallest positive integer k such that

(1.2) holds is called the index of A , and it can be shown that k is the

minimal power for which Ak and Ak+l have the same rank. Moreover,

(Ad)d = AzAd , So that (Ad)d = A if and only if A has index one, whereas
((Ad)d)d = Ad , and Ad always has index one [3]. In Theorem 3 we characerize
matrices, X , such that X = Bd,w for some W in terms of matrices with
index one.

THEOREM 3: ILet B and X be any m by n matrices. Then X = B for

a,w

some W if and only if X has the form




(2.11) X = BYBYB
for some matrix Y such that both BY and YB have index one.
Proof: Suppose W = Y(BY)z = (YB)iY , where BY and YB have index one.
Then WB = (YB)d and, using (2.11),
WX = (YB)dYBYB = YB = (WB)d .
In a similar manner, BW = (BY)d, and
XW= BY = (BW)d .
Finally,
XWBWX = BYBYB = X ,
so that (2.4), (2.5) and (2.6) hold for B, W, X and p = 2. Thus X = Bd,w 5
Conversely, if X = B for some W , then

da,w

2
X B(WB)d = (BW)dB (WB)

d

2 2
Bw(BW)dB(WB)dWB

2 2
B (WB) dWB (WB) dWB
is of the form (2.11) where Y = (WB)ZW. Moreover, BY = (Bw)d and YB = (WB)d

have index one. L]

For any matrix B in Theorem 3, both W and Y are n by m , and the
following corollary shows that W= Y and X = B in (2.11) is necessary and

sufficient to have B and B equal.

a,w

COROLLARY 3.1: B = Bd W if and only if B = BWBWB.
’
Proof: If B = BWBWB, then WB = (WB)3 implies WB = (WB)d . Thus, B = Bd W
’
: 2
= = = | ]
Conversely, if B Bd,w B(WB)d , then WB (WB)d .




For any B and W, m by n and n by m , respectively, inter-

3. THE B-WEIGHTED DRAZIN INVERSE OF W .

changing the roles of B and W throughout §2 provides a completely dual set

of results for wd 2 W(Bw)z, the B-weighted Drazin inverse of W . However,
’
+

whereas B has the size of B , W has the size of BH and B . Anal-

da,w 4d,B
ogous to the observation in §2 that Bd = Bd W when B is square and W = I,

’
we now consider choices of W for which B+ = Wa B °
/ 4
s : (2) (2)
Following the notation of [1], let B = {ZlZBZ = Z}. Then wd 5= B
for any W such that B+ =W .
4,B

LEMMA 4: W € B(z) if and only if W = W(BW) . . |

4d,B d,B d

Proof: If Wd L 8(2), then W(BW); = W(BW); so that (Bw)d is idempotent.
’
(2)

Conversely, W(Bw)d € B 5 2

An immediate consequence of Lemma 4 is that only expressions of the form

+ . P . ]
B = w(Bw)d must be ccnsidered when determining choices of W . Moreover, |

+ + + +
observe that since A = Ad for any Hermitian matrix and (BBH) = BH B for

any B , then
£ + |
(3.1) st = s'ee* = B*Rt = B (e . . !

: s H - :
Therefore, one choice of W 1is B . To characterize the class of all matrices

; A : i @ "
which can be used to form B in this manner, it is convenient to replace W |

by CH, where C has the size of B .
DEFINITION 2: For any m by n matrices B and C, C is said to be alias
to B if B =cic, .

Given any m by n matrix B with rank r , B = EF is said to be a
full rank factorization if E and FH have r columns [l1l]. 1In this case
+ +_+ -1_H H -1

" + H 4 + H
B =FE with E = (EE) E a left inverse of E and F = F (FF) a

right inverse of F .




Matrices alias to B are now characterized using a full rank factoriza-
tion of B . 1In the proof of Theorem 5 we use the facts [4] that the general
solution of a consistent system of equations AXB = C can be written as
(3.2) X=X, +Y- a*ayes’ -

where XO is any particular solution and Y is arbitrary, and that necessary
and sufficient conditions for the equations AX = B, XC = D to have a common
solution are that each is consistent and AD = BC in which case

(3.3) X, = a'B + oc* - a*anct

is a solution.

THEOREM 5: ILet B = EF be any full rank factorization. Then C is alias to
B if and only if C has the form

(3.4) C = ESF + 2

where S is any nonsingular matrix and 2 is any matrix such that BZH =0
and ZHB =0 .

Proof; If C has the form in (3.4) where S and 2 satisfy the hypotheses,
then

(CHB)dCH = (FHSHEHEF)GFHSHEH

H H
C (BC) 4

FHSH(EHEFFHSH)dEH

rigH (s 71 (rrt) 1 (2%E) LER

Thus C is alias to B .
To prove the converse, suppose first that B has either full row rank or

full column rank: If B has full row rank and C is alias to B, then

B+ = BH(BBH)-1 = CH(BCH)d implies that BCH is nonsingular. Hence C = SlB
where S1 = CBH(BBH)-1 = c8t is nonsingular. By a similar type of argument,
C= Bs2 with S2 nonsingular if B has full column rank. Consequently, (3.4)

holds with 2 = 0 in both cases.




e

Suppose now that B has neither full row rank nor full column rank. With
S : s +_+ H H
B = EF a full rank factorization and C alias to B , then F E = C (BC )d

implies

(o]
]

H H
FC (EFC )d

=
E

H
Herc?) £ = Py, .
d d
H . s . : :
Therefore, CF is alias to E and EHC is alias to F , so that there exist

nonsingular matrices Q and R , say, for which

(3.5) rct = QEH
and
(3.6) CHE = FHR.

Using (3.3) it then follows that
(3.7) X, = F+QEH + Frret = FirriRe’ = F+QEH
is a solution to (3.5), (3.6) and thus to

(3.8) rc'E = QEHE :

But by (3.2), all solutions of (3.8) can be written as

(3.9) cH = xO + zH

H + + v : . .
where Z =Y - F FYEE with Y arbitrary. Consequently those solutions in

(3.9) such that (3.5) and (3.6) also hold must satisfy Fz® = 0 and Z'E = 0,

which implies BZ® = 0 and 2'B = 0. Finally, the form in (3.4) is obtained

from (3.9) by noting that the last expression for X_. in (3.7) can be written

0
as XO = FHSHEH with SH = (FFH)-IQ nonsingular. =

In Corollary 5.1 we characterize those matrices in (3.4) with 2 = 0.

COROLLARY 5.1: For any full rank factorization B = EF, the set of matrices

alias to B of the form C = ESF is an equivalence class.




e —————————

Proof: The relation is reflexive with S = I, that is, (3.1). Since C = E(SF)
is a full rank factorization, symmetry follows from B = Es_l(SF). Moreover, if
D alias to C has the form D = ET(SF) with T nonsingular, then D is

alias to B . .
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